Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.070
Filtrar
1.
Exp Hematol ; 132: 104178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340948

RESUMO

Myeloproliferative neoplasms (MPNs) are driven by hyperactivation of JAK-STAT signaling but can demonstrate skewed hematopoiesis upon acquisition of additional somatic mutations. Here, using primary MPN samples and engineered embryonic stem cells, we demonstrate that mutations in JAK2 induced a significant increase in erythroid colony formation, whereas mutations in additional sex combs-like 1 (ASXL1) led to an erythroid colony defect. RNA-sequencing revealed upregulation of protein arginine methyltransferase 6 (PRMT6) induced by mutant ASXL1. Furthermore, genetic perturbation of PRMT6 exacerbated the MPN disease burden, including leukemic engraftment and splenomegaly, in patient-derived xenograft models, highlighting a novel tumor-suppressive function of PRMT6. However, augmented erythroid potential and bone marrow human CD71+ cells following PRMT6 knockdown were reserved only for primary MPN samples harboring ASXL1 mutations. Last, treatment of CD34+ hematopoietic/stem progenitor cells with the PRMT6 inhibitor EPZ020411 induced expression of genes involved in heme metabolism, hemoglobin, and erythropoiesis. These findings highlight interactions between JAK2 and ASXL1 mutations and a unique erythroid regulatory network in the context of mutant ASXL1.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Eritropoese/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Transdução de Sinais , Mutação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
2.
Curr Opin Hematol ; 31(3): 71-81, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415349

RESUMO

PURPOSE OF REVIEW: In this review, we present an overview of recent studies of primitive erythropoiesis, focusing on advances in deciphering its embryonic origin, defining species-specific differences in its developmental regulation, and better understanding the molecular and metabolic pathways involved in terminal differentiation. RECENT FINDINGS: Single-cell transcriptomics combined with state-of-the-art lineage tracing approaches in unperturbed murine embryos have yielded new insights concerning the origin of the first (primitive) erythroid cells that arise from mesoderm-derived progenitors. Moreover, studies examining primitive erythropoiesis in rare early human embryo samples reveal an overall conservation of primitive erythroid ontogeny in mammals, albeit with some interesting differences such as localization of erythropoietin (EPO) production in the early embryo. Mechanistically, the repertoire of transcription factors that critically regulate primitive erythropoiesis has been expanded to include regulators of transcription elongation, as well as epigenetic modifiers such as the histone methyltransferase DOT1L. For the latter, noncanonical roles aside from enzymatic activity are being uncovered. Lastly, detailed surveys of the metabolic and proteomic landscape of primitive erythroid precursors reveal the activation of key metabolic pathways such as pentose phosphate pathway that are paralleled by a striking loss of mRNA translation machinery. SUMMARY: The ability to interrogate single cells in vivo continues to yield new insights into the birth of the first essential organ system of the developing embryo. A comparison of the regulation of primitive and definitive erythropoiesis, as well as the interplay of the different layers of regulation - transcriptional, epigenetic, and metabolic - will be critical in achieving the goal of faithfully generating erythroid cells in vitro for therapeutic purposes.


Assuntos
Eritropoese , Proteômica , Camundongos , Humanos , Animais , Eritropoese/genética , Células Eritroides , Fatores de Transcrição/genética , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/genética
3.
Hum Cell ; 37(3): 648-665, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38388899

RESUMO

Human myeloid leukemia cells (such as K562) could be used for the study of erythropoiesis, and mature erythroid markers and globins could be induced during leukemia cell differentiation; however, the pathways involved are different compared with those of hematopoietic stem cells (HSCs).We identified the differentially expressed genes (DEGs) of K562 cells and HSCs associated with stem cells and erythroid differentiation. Furthermore, we showed that hemin-induced differentiation of K562 cells could be induced by serum starvation or treatment with the tyrosine kinase inhibitor saracatinib. However, erythroid differentiation of HSCs was inhibited by the deprivation of the important serum component erythropoietin (EPO) or treatment with saracatinib. Finally, we found that the mRNA expression of K562 cells and HSCs was different during saracatinib-treated erythroid differentiation, and the DEGs of K562 cells and HSCs associated with tyrosine-protein kinase were identified.These findings elucidated the cellular phenomenon of saracatinib induction during erythroid differentiation of K562 cells and HSCs, and the potential mechanism is the different mRNA expression profile of tyrosine-protein kinase in K562 cells and HSCs.


Assuntos
Benzodioxóis , Eritropoese , Hemina , Quinazolinas , Humanos , Hemina/farmacologia , Células K562 , Eritropoese/genética , Diferenciação Celular/genética , Células-Tronco Hematopoéticas , RNA Mensageiro , Tirosina , Proteínas Quinases
4.
Blood Adv ; 8(6): 1449-1463, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38290102

RESUMO

ABSTRACT: During development, erythroid cells are produced through at least 2 distinct hematopoietic waves (primitive and definitive), generating erythroblasts with different functional characteristics. Human induced pluripotent stem cells (iPSCs) can be used as a model platform to study the development of red blood cells (RBCs) with many of the differentiation protocols after the primitive wave of hematopoiesis. Recent advances have established that definitive hematopoietic progenitors can be generated from iPSCs, creating a unique situation for comparing primitive and definitive erythrocytes derived from cell sources of identical genetic background. We generated iPSCs from healthy fetal liver (FL) cells and produced isogenic primitive or definitive RBCs which were compared directly to the FL-derived RBCs. Functional assays confirmed differences between the 2 programs, with primitive RBCs showing a reduced proliferation potential, larger cell size, lack of Duffy RBC antigen expression, and higher expression of embryonic globins. Transcriptome profiling by scRNA-seq demonstrated high similarity between FL- and iPSC-derived definitive RBCs along with very different gene expression and regulatory network patterns for primitive RBCs. In addition, iPSC lines harboring a known pathogenic mutation in the erythroid master regulator KLF1 demonstrated phenotypic changes specific to definitive RBCs. Our studies provide new insights into differences between primitive and definitive erythropoiesis and highlight the importance of ontology when using iPSCs to model genetic hematologic diseases. Beyond disease modeling, the similarity between FL- and iPSC-derived definitive RBCs expands potential applications of definitive RBCs for diagnostic and transfusion products.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Eritropoese/genética , Eritrócitos , Diferenciação Celular/genética , Eritroblastos/metabolismo
5.
Exp Hematol ; 131: 104167, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262486

RESUMO

Every second, the body produces 2 million red blood cells through a process called erythropoiesis. Erythropoiesis is hierarchical in that it results from a series of cell fate decisions whereby hematopoietic stem cells progress toward the erythroid lineage. Single-cell transcriptomic and proteomic approaches have revolutionized the way we understand erythropoiesis, revealing it to be a gradual process that underlies a progressive restriction of fate potential driven by quantitative changes in lineage-specifying transcription factors. Despite these major advances, we still know very little about what cell fate decision entails at the molecular level. Novel approaches that simultaneously measure additional properties in single cells, including chromatin accessibility, transcription factor binding, and/or cell surface proteins are being developed at a fast pace, providing the means to exciting new advances in the near future. In this review, we briefly summarize the main findings obtained from single-cell studies of erythropoiesis, highlight outstanding questions, and suggest recent technological advances to address them.


Assuntos
Eritropoese , Proteômica , Eritropoese/genética , Multiômica , Diferenciação Celular , Células-Tronco Hematopoéticas
6.
Leukemia ; 38(1): 96-108, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857886

RESUMO

Iron overload (IOL) is hypothesized to contribute to dysplastic erythropoiesis. Several conditions, including myelodysplastic syndrome, thalassemia and sickle cell anemia, are characterized by ineffective erythropoiesis and IOL. Iron is pro-oxidant and may participate in the pathophysiology of these conditions by increasing genomic instability and altering the microenvironment. There is, however, lack of in vivo evidence demonstrating a role of IOL and oxidative damage in dysplastic erythropoiesis. NRF2 transcription factor is the master regulator of antioxidant defenses, playing a crucial role in the cellular response to IOL in the liver. Here, we crossed Nrf2-/- with hemochromatosis (Hfe-/-) or hepcidin-null (Hamp1-/-) mice. Double-knockout mice developed features of ineffective erythropoiesis and myelodysplasia including macrocytic anemia, splenomegaly, and accumulation of immature dysplastic bone marrow (BM) cells. BM cells from Nrf2/Hamp1-/- mice showed increased in vitro clonogenic potential and, upon serial transplantation, recipients disclosed cytopenias, despite normal engraftment, suggesting defective differentiation. Unstimulated karyotype analysis showed increased chromosome instability and aneuploidy in Nrf2/Hamp1-/- BM cells. In HFE-related hemochromatosis patients, NRF2 promoter SNP rs35652124 genotype TT (predicted to decrease NRF2 expression) associated with increased MCV, consistent with erythroid dysplasia. Our results suggest that IOL induces ineffective erythropoiesis and dysplastic hematologic features through oxidative damage in Nrf2-deficient cells.


Assuntos
Anemia , Hemocromatose , Sobrecarga de Ferro , Síndromes Mielodisplásicas , Animais , Humanos , Camundongos , Anemia/metabolismo , Eritropoese/genética , Hemocromatose/genética , Hemocromatose/metabolismo , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Camundongos Knockout , Síndromes Mielodisplásicas/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
7.
Leukemia ; 38(1): 1-9, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37973818

RESUMO

ABSTACT: Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow failure disorder characterized by erythroid hypoplasia. It primarily affects infants and is often caused by heterozygous allelic variations in ribosomal protein (RP) genes. Recent studies also indicated that non-RP genes like GATA1, TSR2, are associated with DBA. P53 activation, translational dysfunction, inflammation, imbalanced globin/heme synthesis, and autophagy dysregulation were shown to contribute to disrupted erythropoiesis and impaired red blood cell production. The main therapeutic option for DBA patients is corticosteroids. However, half of these patients become non-responsive to corticosteroid therapy over prolonged treatment and have to be given blood transfusions. Hematopoietic stem cell transplantation is currently the sole curative option, however, the treatment is limited by the availability of suitable donors and the potential for serious immunological complications. Recent advances in gene therapy using lentiviral vectors have shown promise in treating RPS19-deficient DBA by promoting normal hematopoiesis. With deepening insights into the molecular framework of DBA, emerging therapies like gene therapy hold promise for providing curative solutions and advancing comprehension of the underlying disease mechanisms.


Assuntos
Anemia de Diamond-Blackfan , Transplante de Células-Tronco Hematopoéticas , Lactente , Humanos , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/terapia , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Terapia Genética , Eritropoese/genética , Transtornos da Insuficiência da Medula Óssea
8.
Blood Cells Mol Dis ; 104: 102761, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37271682

RESUMO

ß-Thalassemia is a genetic form of anemia due to mutations in the ß-globin gene, that leads to ineffective and extramedullary erythropoiesis, abnormal red blood cells and secondary iron-overload. The severity of the disease ranges from mild to lethal anemia based on the residual levels of globins production. Despite being a monogenic disorder, the pathophysiology of ß-thalassemia is multifactorial, with different players contributing to the severity of anemia and secondary complications. As a result, the identification of effective therapeutic strategies is complex, and the treatment of patients is still suboptimal. For these reasons, several models have been developed in the last decades to provide experimental tools for the study of the disease, including erythroid cell lines, cultures of primary erythroid cells and transgenic animals. Years of research enabled the optimization of these models and led to decipher the mechanisms responsible for globins deregulation and ineffective erythropoiesis in thalassemia, to unravel the role of iron homeostasis in the disease and to identify and validate novel therapeutic targets and agents. Examples of successful outcomes of these analyses include iron restricting agents, currently tested in the clinics, several gene therapy vectors, one of which was recently approved for the treatment of most severe patients, and a promising gene editing strategy, that has been shown to be effective in a clinical trial. This review provides an overview of the available models, discusses pros and cons, and the key findings obtained from their study.


Assuntos
Talassemia beta , Animais , Humanos , Talassemia beta/genética , Talassemia beta/terapia , Eritropoese/genética , Ferro/metabolismo , Globinas/genética , Modelos Animais de Doenças
9.
10.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958735

RESUMO

Mouse erythropoiesis is a multifaceted process involving the intricate interplay of proliferation, differentiation, and maturation of erythroid cells, leading to significant changes in their transcriptomic and proteomic profiles. While the immunoregulatory role of murine erythroid cells has been recognized historically, modern investigative techniques have been sparingly applied to decipher their functions. To address this gap, our study sought to comprehensively characterize mouse erythroid cells through contemporary transcriptomic and proteomic approaches. By evaluating CD71 and Ter-119 as sorting markers for murine erythroid cells and employing bulk NanoString transcriptomics, we discerned distinctive gene expression profiles between bone marrow and fetal liver-derived erythroid cells. Additionally, leveraging flow cytometry, we assessed the surface expression of CD44, CD45, CD71, and Ter-119 on normal and phenylhydrazine-induced hemolytic anemia mouse bone marrow and splenic erythroid cells. Key findings emerged: firstly, the utilization of CD71 for cell sorting yielded comparatively impure erythroid cell populations compared to Ter-119; secondly, discernible differences in immunoregulatory molecule expression were evident between erythroid cells from mouse bone marrow and fetal liver; thirdly, two discrete branches of mouse erythropoiesis were identified based on CD45 expression: CD45-negative and CD45-positive, which had been altered differently in response to phenylhydrazine. Our deductions underscore (1) Ter-119's superiority over CD71 as a murine erythroid cell sorting marker, (2) the potential of erythroid cells in murine antimicrobial immunity, and (3) the importance of investigating CD45-positive and CD45-negative murine erythroid cells separately and in further detail in future studies.


Assuntos
Medula Óssea , Transcriptoma , Animais , Camundongos , Células da Medula Óssea , Diferenciação Celular , Células Eritroides , Eritropoese/genética , Fígado , Fenil-Hidrazinas , Proteômica
11.
Nat Commun ; 14(1): 7542, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985773

RESUMO

Circulating cell-free DNA (cfDNA) fragments are a biological analyte with extensive utility in diagnostic medicine. Understanding the source of cfDNA and mechanisms of release is crucial for designing and interpreting cfDNA-based liquid biopsy assays. Using cell type-specific methylation markers as well as genome-wide methylation analysis, we determine that megakaryocytes, the precursors of anuclear platelets, are major contributors to cfDNA (~26%), while erythroblasts contribute 1-4% of cfDNA in healthy individuals. Surprisingly, we discover that platelets contain genomic DNA fragments originating in megakaryocytes, contrary to the general understanding that platelets lack genomic DNA. Megakaryocyte-derived cfDNA is increased in pathologies involving increased platelet production (Essential Thrombocythemia, Idiopathic Thrombocytopenic Purpura) and decreased upon reduced platelet production due to chemotherapy-induced bone marrow suppression. Similarly, erythroblast cfDNA is reflective of erythrocyte production and is elevated in patients with thalassemia. Megakaryocyte- and erythroblast-specific DNA methylation patterns can thus serve as biomarkers for pathologies involving increased or decreased thrombopoiesis and erythropoiesis, which can aid in determining the etiology of aberrant levels of erythrocytes and platelets.


Assuntos
Ácidos Nucleicos Livres , Megacariócitos , Humanos , Trombopoese , Eritropoese/genética , Ácidos Nucleicos Livres/genética , Plaquetas , Eritroblastos , DNA
12.
Sci Adv ; 9(48): eadi7375, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019913

RESUMO

Myelodysplastic syndrome (MDS) is a group of clonal hematopoietic neoplasms originating from hematopoietic stem progenitor cells (HSPCs). We previously identified frequent roundabout guidance receptor 1 (ROBO1) mutations in patients with MDS, while the exact role of ROBO1 in hematopoiesis remains poorly delineated. Here, we report that ROBO1 deficiency confers MDS-like disease with anemia and multilineage dysplasia in mice and predicts poor prognosis in patients with MDS. More specifically, Robo1 deficiency impairs HSPC homeostasis and disrupts HSPC pool, especially the reduction of megakaryocyte erythroid progenitors, which causes a blockage in the early stages of erythropoiesis in mice. Mechanistically, transcriptional profiling indicates that Cdc42, a member of the Rho-guanosine triphosphatase family, acts as a downstream target gene for Robo1 in HSPCs. Overexpression of Cdc42 partially restores the self-renewal and erythropoiesis of HSPCs in Robo1-deficient mice. Collectively, our result implicates the essential role of ROBO1 in maintaining HSPC homeostasis and erythropoiesis via CDC42.


Assuntos
Eritropoese , Síndromes Mielodisplásicas , Animais , Humanos , Camundongos , Eritropoese/genética , Síndromes Mielodisplásicas/genética , Proteínas do Tecido Nervoso/genética , Prognóstico , Receptores Imunológicos/genética
13.
Development ; 150(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37882745

RESUMO

Primitive erythropoiesis serves a vital role in embryonic development, generating primitive red blood cells responsible for transportation of oxygen throughout the body. Although diverse niche factors are known to function in definitive hematopoiesis, the microenvironment contributing to primitive hematopoiesis remains largely elusive. Here, we report that platelet-derived growth factor (PDGF) signaling is required for erythroid progenitor differentiation in zebrafish. Ablating pdgfαa (also known as pdgfaa) and pdgfαb (also known as pdgfab) or blocking PDGF signaling with an inhibitor impairs erythroid progenitor differentiation, thus resulting in a significant decrease in the number of erythrocytes. We reveal that pdgfαb is expressed in sclerotomal cells, and that its receptor genes, pdgfra and pdgfrb, are expressed in the adjacent erythroid progenitor cells. Sclerotome-specific overexpression of pdgfαb effectively restores primitive erythropoiesis in pdgfαa-/-;pdgfαb-/- mutant embryos. In addition, we have defined ERK1/2 signaling as a downstream pathway of PDGF signaling during embryonic erythropoiesis. Taken together, our findings indicate that PDGF signaling derived from sclerotome functions as a niche cue for primitive erythropoiesis.


Assuntos
Eritropoese , Fator de Crescimento Derivado de Plaquetas , Animais , Eritropoese/genética , Peixe-Zebra , Sinais (Psicologia) , Diferenciação Celular/genética , Desenvolvimento Embrionário
14.
Nat Commun ; 14(1): 6260, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803026

RESUMO

ß-thalassemia is a prevalent genetic disorder causing severe anemia due to defective erythropoiesis, with few treatment options. Studying the underlying molecular defects is impeded by paucity of suitable patient material. In this study we create human disease cellular model systems for ß-thalassemia by gene editing the erythroid line BEL-A, which accurately recapitulate the phenotype of patient erythroid cells. We also develop a high throughput compatible fluorometric-based assay for evaluating severity of disease phenotype and utilize the assay to demonstrate that the lines respond appropriately to verified reagents. We next use the lines to perform extensive analysis of the altered molecular mechanisms in ß-thalassemia erythroid cells, revealing upregulation of a wide range of biological pathways and processes along with potential novel targets for therapeutic investigation. Overall, the lines provide a sustainable supply of disease cells as research tools for identifying therapeutic targets and as screening platforms for new drugs and reagents.


Assuntos
Talassemia beta , Humanos , Talassemia beta/genética , Talassemia beta/terapia , Eritropoese/genética , Células Eritroides , Fenótipo
15.
Aging Cell ; 22(12): e13997, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37824094

RESUMO

Approximately 25 trillion erythrocytes (red blood cells) circulate in the bloodstream of an adult human, surpassing the number of circulating leukocytes (white blood cells) by a factor of about 1000. Moreover, the erythrocyte turnover rate accounts for approximately 76% of the turnover rate of all circulating blood cells. This simple math shows that the hematopoietic system principally spends its telomere length-dependent replicative capacity on building and maintaining the erythrocyte blood pool. Erythropoiesis (red blood cell production) is thus the principal cause of telomere shortening with age in hematopoietic cells (HCs), a conclusion that holds significant implications for linking telomere length dynamics in HCs to health and lifespan of modern humans.


Assuntos
Eritrócitos , Eritropoese , Adulto , Humanos , Eritropoese/genética , Leucócitos , Longevidade , Telômero
16.
Blood Adv ; 7(22): 6873-6885, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37672319

RESUMO

ß-thalassemias are common hemoglobinopathies due to mutations in the ß-globin gene that lead to hemolytic anemias. Premature death of ß-thalassemic erythroid precursors results in ineffective erythroid maturation, increased production of erythropoietin (EPO), expansion of erythroid progenitor compartment, extramedullary erythropoiesis, and splenomegaly. However, the molecular mechanism of erythroid apoptosis in ß-thalassemia is not well understood. Using a mouse model of ß-thalassemia (Hbbth3/+), we show that dysregulated expression of the FOXO3 transcription factor is implicated in ß-thalassemia erythroid apoptosis. In Foxo3-/-/Hbbth3/+ mice, erythroid apoptosis is significantly reduced, whereas erythroid cell maturation, and red blood cell and hemoglobin production are substantially improved even with elevated reactive oxygen species in double-mutant erythroblasts. However, persistence of elevated reticulocytes and splenomegaly suggests that ineffective erythropoiesis is not resolved in Foxo3-/-/Hbbth3/+. We found the cell cycle inhibitor Cdkn1a (cyclin-dependent kinase inhibitor p21), a FOXO3 target gene, is markedly upregulated in both mouse and patient-derived ß-thalassemic erythroid precursors. Double-mutant p21/Hbbth3/+ mice exhibited embryonic lethality with only a fraction of mice surviving to weaning. Notably, studies in adult mice displayed greatly reduced apoptosis and circulating Epo in erythroid compartments of surviving p21-/-/Hbbth3/+ mice relative to Hbbth3/+ mice, whereas ineffective erythroid cell maturation, extramedullary erythropoiesis, and splenomegaly were not modified. These combined results suggest that mechanisms that control ß-thalassemic erythroid cell survival and differentiation are uncoupled from ineffective erythropoiesis and involve a molecular network including FOXO3 and P21. Overall, these studies provide a new framework for investigating ineffective erythropoiesis in ß-thalassemia.


Assuntos
Eritropoese , Talassemia beta , Humanos , Apoptose , Talassemia beta/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Eritropoese/genética , Esplenomegalia
17.
Blood ; 142(25): 2198-2215, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37738561

RESUMO

ABSTRACT: Regulation of RNA polymerase II (RNAPII) activity is an essential process that governs gene expression; however, its contribution to the fundamental process of erythropoiesis remains unclear. hexamethylene bis-acetamide inducible 1 (HEXIM1) regulates RNAPII activity by controlling the location and activity of positive transcription factor ß. We identified a key role for HEXIM1 in controlling erythroid gene expression and function, with overexpression of HEXIM1 promoting erythroid proliferation and fetal globin expression. HEXIM1 regulated erythroid proliferation by enforcing RNAPII pausing at cell cycle check point genes and increasing RNAPII occupancy at genes that promote cycle progression. Genome-wide profiling of HEXIM1 revealed that it was increased at both repressed and activated genes. Surprisingly, there were also genome-wide changes in the distribution of GATA-binding factor 1 (GATA1) and RNAPII. The most dramatic changes occurred at the ß-globin loci, where there was loss of RNAPII and GATA1 at ß-globin and gain of these factors at γ-globin. This resulted in increased expression of fetal globin, and BGLT3, a long noncoding RNA in the ß-globin locus that regulates fetal globin expression. GATA1 was a key determinant of the ability of HEXIM1 to repress or activate gene expression. Genes that gained both HEXIM1 and GATA1 had increased RNAPII and increased gene expression, whereas genes that gained HEXIM1 but lost GATA1 had an increase in RNAPII pausing and decreased expression. Together, our findings reveal a central role for universal transcription machinery in regulating key aspects of erythropoiesis, including cell cycle progression and fetal gene expression, which could be exploited for therapeutic benefit.


Assuntos
Eritropoese , Fatores de Transcrição , Humanos , Eritropoese/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Transcrição Gênica , Globinas beta/genética , Globinas beta/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Proteínas de Ligação a RNA/genética
18.
Hematology ; 28(1): 2250645, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37639548

RESUMO

The process of erythropoiesis is complex and involves the transfer of cells from the yolk sac to the fetal hepar and, ultimately, to the bone marrow during embryonic development. Within the bone marrow, erythroid progenitor cells undergo several stages to generate reticulocytes that enter the bloodstream. Erythropoiesis is regulated by various factors, with erythropoietin (EPO) synthesized by the kidney being the promoting factor and hepcidin synthesized by the hepar inhibiting iron mobilization. Transcription factors, such as GATA and KLF, also play a crucial role in erythropoiesis. Disruption of any of these factors can lead to abnormal erythropoiesis, resulting in red cell excess, red cell deficiency, or abnormal morphological function. This review provides a general description of erythropoiesis, as well as its regulation, highlighting the significance of understanding the process for the diagnosis and treatment of various hematological disorders.


Assuntos
Eritrócitos , Eritropoese , Feminino , Gravidez , Humanos , Eritropoese/genética , Células Precursoras Eritroides , Ferro , Rim
19.
Sci Rep ; 13(1): 12864, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553354

RESUMO

Transcriptional changes in compensatory erythropoiesis in sickle cell anemia (SCA) and their disease modulation are unclear. We detected 1226 differentially expressed genes in hemoglobin SS reticulocytes compared to non-anemic hemoglobin AA controls. Assessing developmental expression changes in hemoglobin AA erythroblasts for these genes suggests heightened terminal differentiation in early erythroblasts in SCA that diminishes toward the polychromatic to orthochromatic stage transition. Comparison of reticulocyte gene expression changes in SCA with that in Chuvash erythrocytosis, a non-anemic disorder of increased erythropoiesis due to constitutive activation of hypoxia inducible factors, identified 453 SCA-specific changes attributable to compensatory erythropoiesis. Peripheral blood mononuclear cells (PBMCs) in SCA contain elevated proportions of erythroid progenitors due to heightened erythropoiesis. Deconvolution analysis in PBMCs from 131 SCA patients detected 54 genes whose erythroid expression correlated with erythropoiesis efficiency, which were enriched with SCA-specific changes (OR = 2.9, P = 0.00063) and annotation keyword "ubiquitin-dependent protein catabolic process", "protein ubiquitination", and "protein polyubiquitination" (OR = 4.2, P = 7.5 × 10-5). An erythroid expression quantitative trait locus of one of these genes, LNX2 encoding an E3 ubiquitin ligase, associated with severe pain episodes in 774 SCA patients (OR = 1.7, P = 3.9 × 10-5). Thus, erythroid gene transcription responds to unique conditions within SCA erythroblasts and these changes potentially correspond to vaso-occlusive manifestations.


Assuntos
Anemia Falciforme , Reticulócitos , Humanos , Reticulócitos/metabolismo , Leucócitos Mononucleares/metabolismo , Eritroblastos/metabolismo , Eritropoese/genética , Expressão Gênica
20.
Sci Rep ; 13(1): 12279, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563131

RESUMO

Krüppel-like transcription factors (Klfs), which are characterized by the three conserved C-terminal zinc fingers, are involved in various biological processes, such as haematopoiesis and angiogenesis. However, how the Klf family of transcription factors cooperate in organogenesis remains elusive. During zebrafish embryogenesis, both klf1 and klf17 are expressed in the intermediate cell mass (ICM), where primitive erythroid cells are produced. Using CRISPR-Cas9 genome editing technology, we established klf1-klf17 double mutant zebrafish to investigate the functionally interactive roles of the klf1 and klf17 genes. The klf1-klf17 mutant exhibited a diminished number of circulating primitive erythroid cells at 2 days postfertilization (dpf), while klf1 or klf17 single mutants and wild-type embryos produced comparable numbers of primitive erythroid cells. Circulating erythroid cells from the klf1-klf17 mutant possessed larger nuclei at 2 dpf than wild-type cells, suggesting the impairment of primitive erythroid cell maturation. The expression of the erythroid cell maturation markers band3 and mitoferrin, but not the haematopoietic progenitor markers c-myb and scl, was decreased in the klf1-klf17 mutant at 1 dpf. Thus, these results illustrate the cooperative function of klf1 and klf17 in the maturation processes of zebrafish primitive erythroid cells.


Assuntos
Eritropoese , Peixe-Zebra , Animais , Desenvolvimento Embrionário , Eritropoese/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...